The prostanoid EP4 receptor and its signaling pathway.
نویسندگان
چکیده
The EP4 prostanoid receptor is one of four receptor subtypes for prostaglandin E2. It belongs to the family of G protein-coupled receptors. It was originally identified, similar to the EP2 receptor as a G(s)α-coupled, adenylyl cyclase-stimulating receptor. EP4 signaling plays a variety of roles through cAMP effectors, i.e., protein kinase A and exchange protein activated by cAMP. However, emerging evidence from studies using pharmacological approaches and genetically modified mice suggests that EP4, unlike EP2, can also be coupled to G(i)α, phosphatidylinositol 3-kinase, β-arrestin, or β-catenin. These signaling pathways constitute unique roles for the EP4 receptor. EP4 is widely distributed in the body and thus plays various physiologic and pathophysiologic roles. In particular, EP4 signaling is closely related to carcinogenesis, cardiac hypertrophy, vasodilation, vascular remodeling, bone remodeling, gastrointestinal homeostasis, renal function, and female reproductive function. In addition to the classic anti-inflammatory action of EP4 on mononuclear cells and T cells, recent evidence has shown that EP4 signaling contributes to proinflammatory action as well. The aim of this review is to present current findings on the biologic functions of the EP4 receptor. In particular, we will discuss its diversity from the standpoint of EP4-mediated signaling.
منابع مشابه
Prostaglandin E2-prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression.
UV radiation induces systemic immunosuppression. Because nonsteroidal anti-inflammatory drugs suppress UV-induced immunosuppression, prostanoids have been suspected as a crucial mediator of this UV effect. However, the identity of the prostanoid involved and its mechanism of action remain unclear. Here, we addressed this issue by subjecting mice deficient in each prostanoid receptor individuall...
متن کاملCellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1α in HCA-7 human colon cancer cells
Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditi...
متن کاملDifferential regulation of phosphorylation of the cAMP response element-binding protein after activation of EP2 and EP4 prostanoid receptors by prostaglandin E2.
The EP2 and EP4 prostanoid receptors are G-protein-coupled receptors whose activation by their endogenous ligand, prostaglandin (PG) E2, stimulates the formation of intracellular cAMP. We have previously reported that the stimulation of cAMP formation in EP4-expressing cells is significantly less than in EP2-expressing cells, despite nearly identical levels of receptor expression (J Biol Chem 2...
متن کاملOpposing effects of prostaglandin E2 receptors EP3 and EP4 on mouse and human β-cell survival and proliferation
OBJECTIVE Hyperglycemia and systemic inflammation, hallmarks of Type 2 Diabetes (T2D), can induce the production of the inflammatory signaling molecule Prostaglandin E2 (PGE2) in islets. The effects of PGE2 are mediated by its four receptors, E-Prostanoid Receptors 1-4 (EP1-4). EP3 and EP4 play opposing roles in many cell types due to signaling through different G proteins, Gi and GS, respectiv...
متن کاملACCELERATED COMMUNICATION EP4 Prostanoid Receptor Coupling to a Pertussis Toxin-Sensitive Inhibitory G Protein
The EP2 and EP4 prostanoid receptor subtypes are G-proteincoupled receptors for prostaglandin E2 (PGE2). Both receptor subtypes are known to couple to the stimulatory guanine nucleotide binding protein (G s) and, after stimulation with PGE2, can increase the formation of intracellular cAMP. In addition, PGE2 stimulation of the EP4 receptor can activate phosphatidylinositol 3-kinase (PI3K) leadi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pharmacological reviews
دوره 65 3 شماره
صفحات -
تاریخ انتشار 2013